易造网

当前位置:首页 > 我爱学习 > 说课稿

新人教版有理数教学设计

作者:opple 时间:2023-01-05 阅读:()

  再思考:这节课是我调入新的学校上的汇报课,领导还有同事们对我的课都做出了中肯的点评,最后一位颇有资历的领导谈到:数学教学应体现其本质,用“数轴”探究有理数的的加法更能体现加法的本质,授课者应做好合理的应用。换言之,本节课未能很好体现加法的本质。个人思考再三认为加法的本质就是“连续两次变化的总结果”,用数轴表示向东走向西走,还是举生活中的盈亏实例等都体现了加法的本质。新旧版本的华师大教材都是以“数轴”为载体探究有理数加法法则的,这种载体的应用主要凸显了直观,变化的结果一清二楚,也体现了数与形的有效结合,无疑是一种很好而有效的载体,但我们为什么不在教材现有载体的基础上做一些突破,让学生从多角度多方位理解加法运算呢!其实现实生活中的“盈”与“亏”生活气息浓郁,且学生熟知,会吸引众多的学生参与,“同号相加”就是“盈盈”型或“亏亏”型,“异号两数相加”就是“盈亏”型,(+5)+(-5)为什么是0?显然盈亏一样,最终兜里没钱!而(+3)+(-10)为什么结果取“-”且用“10-3”,盈少亏多呗!最终还是亏了7元!将加法置身于这样的情景更有利于理解加法的意义,总结加法法则,理解加法法则。

  篇9:《有理数》的教学设计

  《有理数》的教学设计

  教学目标

  【知识与能力目标】

  掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力。

  【过程与方法目标】

  体验分类是数学上的常用处理问题的方法。

  【情感态度价值观目标】

  要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史。

  教学重难点

  【教学重点】

  正确理解有理数的概念。

  【教学难点】

  课前准备

  复习正负数,尝试将之前学过的数进行合理的分类。

  教学过程

  探索新知

  之前我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。

  问题1:观察黑板上的9个数,并给它们进行分类。

  学生思考讨论和交流分类的情况。

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

  例如:

  对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。“(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’。

  按照书本的说法,得出“整数”“分数”和“有理数”的概念。

  看书了解有理数名称的由来。

  “统称”是指“合起来总的名称”的意思。

  试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)

  练一练

  1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。

  2、教科书第8页练习。

  此练习中出现了集合的概念,可向学生作如下的说明。

  把一些数放在一起,就组成了一个数的`集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

  思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  创新探究

  问题2:有理数可分为正数和负数两大类,对吗?为什么?

显示全部

收起

相关文章
精品推荐
猜你喜欢