作者:opple 时间:2023-01-05 阅读:()
从实数的基本性质出发,可以证明下列常用的不等式的基本性质:
(1)
(2)
(3)
(4)
证明:
例1讲解(第82页)
[练习]第82页,第3题。
[思考]:利用以上基本性质,证明不等式的下列性质:
[小结]:1.现实世界和日常生活中存在着大量的不等关系;
2.利用不等式的有关基本性质研究不等关系;
[作业]:习题3.1(第83页):(A组)4、5;(B组)2.
篇8:基本不等式教学设计
一、三维目标:
1、知识与技能:
理解基本不等式的内容及其证明,能应用基本不等式解决求最值、证明不等式、比较大小、求取值范围等问题
2、过程与方法:
能够理解并建立不等式的知识链
3、情感、态度与价值观:
通过运用基本不等式解答实际问题,提高用数学手段解答现实生活中的问题的能力和意识
4、本节重点:
应用数形结合的思想,理解基本不等式,并从不同角度探索基本不等式的证明过程
5、本节难点:
应用基本不等式求最值
二、课程引入:
第24届世界数学家大会在北京召开,会标设计如图:
四个以a,b为直角边的直角△ABC,组成正方形ABCD
则
如图可知: 即
当且仅当小正方形EFGH面积为0时取等号,即时取得等号
三、新课讲授:
(一)基本不等式的推证:
1、重要不等式与基本不等式
由引入中提到的重要不等式,将其中的用代换,
得到基本不等式,当且仅当时,即时取得等号。
特别注意,重要不等式的适用范围是全体实数,
而基本不等式的使用需要
2、基本不等式的几种表述方式
平均数角度:两正数的算术平均数不小于它们的几何平均数(均值不等式定理)
数列角度:两正数的等差中项不小于它们的等比中项
探究:基本不等式的几何表示:半径不小于半弦长
3、分析法推证基本不等式
要证,只需证明(2)。要证明(2)只需证明(3)。
要证明(3)只需证明(4)。(4)式显然成立,故得证。
(二)基本不等式的应用与提高:
1、你是设计师!
(1)春天到了,学校决定用篱笆围一个面积为100平米的花圃种花。有以下两种方案:
圆形花圃:造价12元/米
矩形花圃:造价10元/米
你觉得哪个方案更省钱呢?
分析及解答:因为初中学习过平面几何,同学们大都知道,同样长度的篱笆围圆形会比围矩形得到的面积大,由此可知,同样的面积肯定是为圆形用的材料省。但是本题涉及造价问题,两种篱笆的花费不同。圆形篱笆虽然需要的材料少,但是每米的花费高,所以到底应该用哪个方案需要动手算一下才能知道。在这里让学生分成两派,可以自己选择一个认为比较省钱的方案去计算。
圆形花圃:
矩形花圃:设两边为x,y,,故当x=y时花费最少为400元
(2)现在只有36米的篱笆可用,怎么样设计才能使得矩形花圃的面积最大?
解:
(3)有人出了个主意,让花圃的一面靠墙,利用墙壁作为花圃的一边,可以省一部分材料。那么发挥你的聪明才智,用这36米的篱笆,怎么样设计才能围出面积最大的花圃?
2、看谁算得快!
3、大家来挑错!
分析:结合上一系列题目中的(5)-(7)题可知,本题的解答忽略了对基本不等式使用时必须是正数这一点注意事项。
本题的解答在使用基本不等式时没有找到定值条件,只是盲目的套用基本不等式的形式,导致所得结果并不是最小的值。
提醒同学注意:在使用基本不等式求最值为题时,式中的积或和必须是定值。
本题的解答没有注意本身的限制,使得基本不等式的等号无法取得。
提醒同学注意:最值是否存在要考虑基本不等式中的`等号是否能取得,在什么情况下取得。
(三)小结:
1、使用重要不等式和基本不等式需要注意适用条件,基本不等式需要正数,重要不等式可用于全体实数。
2、积定和最小、和定积最大。
10/26 首页 上一页 8 9 10 11 12 13 下一页 尾页
显示全部
收起