作者:opple 时间:2023-01-11 阅读:()
160×(1-90%)
= 160×10%
= 16(元)
解题思路:原价160元,便宜的部分占原价的(1-90%)。这里把原价看作单位“1”。
答:比原价便宜了16元。
(6)小结:解答这类应用题时,关键是理解打折的含义,把折数化成百分数,再按解百分数应用题方法解答。
【设计意图:将学生熟悉的生活情景引入课堂作为教学切入点,引导学生进行知识迁移,学生便能迅速地进入最佳的学习状态,身临其境地去观察,去分析,去思考,去对比,在理解折扣的意义上掌握不同的解题方法。】
三、应用拓展,深化认识。
“折扣”这一现象在我们的生活中太普遍了,因此应用好这一知识就能帮我们很好地解决生活中的一些实际问题。
1、第97页“做一做”。
算出下面各物品打折后出售的价钱(单位:元)
篮球:80.00 书包:105.00 课外书:35.00
(xx折) (七折) (八八折)
学生算完书上的问题后,老师补充一个问题:每种物品的价钱和原来相比有什么变化? 学生独立完成,之后指名回答。
2、第101页第1题:说一说,从图上获得哪些数学信息?(五折也叫做半价)
(1)打完折后,每种面包多少元?
(2)晚8:00以后,玲玲拿3元钱去买面包,她可以怎样买 (让学生考虑买面包的多种方案)
3、第101页第2题:小明用优惠卡买玩具,可以打八折,节约了9.6元,问:这个玩具多少元
(1)帮助学生理解题意。
(2)学生尝试解决。可以直接列式,也可以列方程解决。
(鼓励学生多开动脑筋,用多种方法解决问题)
【设计意图:利用这道题让学生联系”求一个数的百分之几是多少“的知识,学会列方程解答“已知一个数的百分之几是多少,求这个数”的题型】
4、填空:
(1)六折就是十分之( ),写成百分数就是( )%。
(2)某商品打四折销售,就表示现价是原价的( )%, 现价比原价降低了( )%。
(3)某商品售价降低到原价的82%销售,就是打( )折。
5、判断:
(1)商品打折扣都是以商品原价格为单位“1”的。 ( )
(2)一件上衣现在打九折销售,就是比原价降低90%。 ( )
(3)一种游戏卡先提价25%,后来又按七五折出售,现价与原价相等。( )
6、理财小能手:妈妈去买可乐,看到同一种可乐在两个超市有不同的促销策略。她要买5瓶可乐,去哪个超市买合算呢?
甲超市:每瓶6元
八五折
乙超市:买四送一
每瓶6元
7、广告策划,我能行:天气渐冷,买羽绒服的人越来越多,为进行促销,某商店老板准备将原价500元一件的羽绒服以400元的价格出售。请你结合折扣知识,为该店老板设计一个简单的广告。
【设计意图:围绕本节课的教学目标,练习设计按层次进行。同时开放性练习的设计,使学生进一步感受到生活中处处有数学,运用数学知识还能省钱,合理安排日常生活开支,培养了学生自觉应用数学的意识。】
四、课堂总结。
同学们,你们今天的表现都很出色。通过这节课的学习,你有什么感想?
五、板书设计。
折 扣(打 折)
几折表示十分之几或百分之几十。
九折=95% 八五折=85%
例4:(1)180 × 85% = 153(元)
(原价)(折数)(现价)
答:买这辆自行车用了153元。
原价×折数=现价
(2)第一种算法:160-160×90%=160-144=16(元)
第二种算法:160×(1-90%)=160×0.1=16(元)
答:比原价便宜了16元。
教学内容:人教版义务教育标准实验教科书《数学》六年级上册第97页的内容
教学目的:
1、学生理解打折的含义,进一步解决求一个数的百分之几的问题的解法。
2、学生根据实际情况选择最佳方案与策略,提高运用所学知识解决实际问题的能力。
3、学生学会用数学的眼光来看待周围的事物,感受数学的魅力。
教学过程:
一、创设情境,激发兴趣
师生谈话,在“十一”长假做了些什么?人们为什么都在这个时候去采购?通过谈话引出商家往往在这个时候采取一些优惠措施,如打折等。
二、尝试交流,探索新知
5/16 首页 上一页 3 4 5 6 7 8 下一页 尾页
显示全部
收起