易造网

当前位置:首页 > 综合 > 课件

八年级数学上册测试题

作者:opple 时间:2023-01-03 阅读:()

  12.1全等三角形

  1.BC,∠D,∠DBA.2.∠F,FC.3.DC,∠BFC.4.12,6

  5.74°,68°;AB与DC,BC与CB;AB与DC,AO与DO,BO与CO,∠A与∠D,∠AOB与∠DOC,∠ABO与∠DCO.

  6.C7.B8.C9.C10.B11.垂直且相等.12.80°.13.∠OAD=95°

  14.(1)∠F=35°,DH=6.(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.

  15.AE与DE垂直且相等,证明略.

  12.2三角形全等的判定(1)

  1.20°2.SSS

  3.∠QRM,△PRM,△QRM,RP,RQ,PRM,QRM,QM,RM,RM,公共边,△PRM,△QRM,SSS,∠QRM,全等三角形的对应角相等.

  4.已知:如图11-17,AB=DE,AC=DF,BE=CF.△ABC,△DEF,已知,EF,DE,EF,DF,△ABC,△DEF,SSS,全等三角形的对应角相等.

  5.CE,EB,DE,EA,CB,DA,CA,DB,CB,DA,AB,BA,SSS

  6.可证△ABD≌△CAB,∴∠BAD=∠ABC,∠CAB=∠DBA,∴∠CAD=∠DBC.

  7.由SSS可证△ABC≌△CDA.8.略

  9.(1)由SSS可证△ABD≌△ACD;(2)可证∠BDA=∠ADC,又∠BDA+∠ADC=180°,所以AD⊥BC;(3)50°10.略

  12.2三角形全等的判定(2)

  1.25°.2.△AOD,△COB,已知,AOD,COB,对顶角相等,OB,已知,COB,SAS,全等三角形的对应角相等.3.略4.可利用SAS证明△ABD≌△ACD,所以∠B=∠C.

  5.∵DC⊥CA,EA⊥CA,∴∠C=∠A=90°,用SAS证△DCB≌△BAE.

  6.∵AD=AE,BD=CE,∴AD+BD=AE+CE,∴AB=AC再用SAS证△ADC≌△AEB.得∠B=∠C7.(1)∵AB∥ED,∴∠A=∠D,∵AF=DC,∴AF+FC=DC+FC,即AC=DF再用SAS证△ABC≌△DEF,得到BC=EF(2)由△ABC≌△DEF,得到∠BCA=∠EFD,∴BC∥EF.8.AB=AD,AC=AE,∠1+∠DAC=∠2+∠DAC,即

  ∠BAC=∠DAE,∴△ABC≌△ADE,∴BC=DE.

  9.垂直且相等.延长AE,交CD于点F.依题意可得△ABE≌△CBD(SAS),∴AE=CD,∠EAB=∠DCB,∠AFD=180°-∠EAB-∠BDC=180°-∠BCD-∠BDC=90°,∴AE⊥CD

  12.2三角形全等的判定(3)

  1.52.AC=AB(EC=EB)3.∠A=∠D4.∠E=∠D(∠BAE=∠CAD)5.略6.略

  7.D8.B9.C

  10.∵AD∥BC,DF∥BE∴∠A=∠C,∠AFD=∠CEB,再用AAS证△ADF≌△CBE.

  11.∵∠1=∠2,∠CAD=∠DBC,∴∠1+∠CAD=∠2+∠DBC,即∠CAB=∠DBA,再用ASA证△CAB≌△DBA,得到AC=BD.

  12.∵BM∥DN,∴∠ABM=∠D,∵AC=BD,∴AC+CB=BD+CB,即AB=CD再用AAS证△ABM≌△CDN,得到∠A=∠DCN,∴AM∥CN.

  13.可用AAS证明△ABC≌△AED,∴AD=AC.

  14.略15.(1)略(2)全等三角形的对应角平分线相等.(3)略

  16.(1)∵∠AEC=∠ACB=90°∴∠CAE+∠ACE=90°∴∠BCF+∠ACE=90°

  ∴∠CAE=∠BCF∵AC=BC∴△AEC≌△CFB

  ∵△AEC≌△CFB∴CF=AE,CE=BF∴EF=CF+CE=AE+BF

  ①∵∠AEC=∠CFB=∠ACB=90°∴∠ACE=∠CBF

  又∵AC=BC∴△ACE≌△CBF∴CF=AE,CE=BF∴EF=CF-CE=AE-BF②EF=BF-AE

  ③当MN旋转到图3的位置时,AE.EF.BF所满足的等量关系是EF=BF-AE(或AE=BF-EF,BF=AE+EF等)

  ∵∠AEC=∠CFB=∠ACB=90°∴∠ACE=∠CBF,又∵AC=BC,∴△ACE≌△CBF,∴AE=CF,CE=BF,∴EF=CE-CF=BF-AE.

  12.2三角形全等的判定(4)

  1.AB=AC,AAS.2.33.C

  4.可用HL证明△ABD≌△CDB,∴AB=DC,∠ADB=∠CBD,∴AD∥BC.

  5.连接CD,可用HL证明全等,所以AD=BC

  6.可用HL证明全等,所以∠BAC=∠E,∠AFE=180°-∠E-∠FAE=180°-∠BAC-∠FAE=90°.

  7.依题意可用HL证明△ADE≌△CBF,∴∠DAE=∠BCF,可证△ADC≌△CBA(SAS),∴∠DCA=∠BAC∴AB∥DC.

  8.可利用HL证明△OPM≌△OPN,∴∠POA=∠POB,OP平分∠AOB

  9.(1)可利用HL证明△ABF≌△CDE,∴BF=DE,可利用AAS证明△OBF≌△ODE,∴BO=DO.(2)成立,证明方法同上,略

  12.2三角形全等的判定(5)

  1.AC=DF,HL(或者BC=EF,SAS;或者∠A=∠D,ASA;或者∠C=∠F,AAS)

  2.是全等,AAS.3.A4.C5.C6.C

  7.先用HL证△ABF≌△ACG,得到∠BAF=∠CAG,∴∠BAF-∠BAC=∠CAG-∠BAC即∠DAF=∠EAG再用AAS证△GAE≌△DAF,得到AD=AE.

  8.先用SSS证△AED≌△ABE,得到∠DAE=∠BAE,再用SAS证△DAC≌△BAC,得

显示全部

收起

相关文章
精品推荐
猜你喜欢