作者:opple 时间:2023-01-22 阅读:()
小数除法的重点是突出小数点的处理问题,而商的小数点为什么要和被除数的小数点对齐要涉及数的含义。下面就为大家带来了人教版五年级小数除法教学设计,我们一起来看看吧!
2、注重学生的个性发展教育。
在整堂课中,教师为学生提供了广阔的独立思考的开放空间,尊重每一个学生,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识和方法解决问题,使“不同的人在数学上得到不同的发展”。在为学生创造性地解决问题提供机会的同时让学生体验到创新学习的成功喜悦。学生在此过程中,不仅理解了比例尺的意义,学会了求平面图的比例尺与根据比例尺求实际距离的方法,更重要的是每个人都有独立发展的空间,既有情感的体验、交流,又能培养学生搜集、获取有价值信息的能力,学会解决问题的办法。
3、本课我准备采用以教师使用信息技术为主的演示型教学模式。学生以小组为单位进行自主探究学习,经历观察探索、概括概念、应用概念、理解概念、拓展深化的学习过程。
三、教学过程设计
(一)画平面图,引入比例尺
1、出示学校平面图,问:谁来帮老师介绍一下我校的各种建筑物的布局?
2、设计我们教室的平面图:教室长8米,宽6米。师:能照原来的长度画到纸上去吗?该怎么办?
3、讨论引出学习要求:⑴确定图上长和宽的长度;⑵作出教室的平面图;⑶写出图上长和宽的长度;⑷写出图上长、宽与实际长、宽的比,并化简。
4、提出小组学习的具体要求:根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的),选择你们组认为最好的图贴在黑板上。
5、学生小组学习。
6、根据图片组织汇报:⑴选择不同方法的平面图;⑵讨论反馈:你是怎样确定图上的长和宽的?图上的长和宽与实际的长、宽的比各是多少?(小组代表回答)
板书: A 、4厘米:8米=4:800=1:200
3厘米:6米=3:600=1:200
B、8厘米:8米=8:800=1:100
6厘米:6米=6:600=1:100
(二)揭示比例尺的意义。
1、教学“图上距离”、“实际距离”。
2、认识比例尺:图上距离与实际距离的比叫比例尺。
3、揭题 ,回顾:
⑴这几幅平面图的比例尺 分别是多少?
⑵怎么求比例尺?它是谁与谁的比?比的前项是什么?
⑶怎样理解比例尺 ?(把实际距离缩小100倍画在图纸上;实际距离是图上距离的100倍;图上1厘米表示实际距离100厘米……)
4、师:①比例尺与一般的尺不同,它是一个比,不应带有计量单位;②求比例尺时,前项、后项的长度单位一定要化成同级单位;③通常把比例尺写成前项是“1”的比,有时由于机器零件比较小,这时的比例尺要写成后项是“1”的比。
(三)求比例尺、求实际距离和图上距离
1、求比例尺。
例:上海到北京的实际距离是120千米。在一副地图量得上海到北京的距离是2厘米,那么这副地图的比例尺是多少?
⑴学生独立作业,反馈订正;
⑵小结:单位要统一;比例尺的前项一般都是1。
2、求实际距离。
⑴出示例题:在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?
⑵组织同桌同学各用一种方法来解答(算术方法和用方程解),并互相交流。
⑶汇报交流并总结。
师强调:①把1:6000000化为分数形式来解答;②解答时要注意单位的化聚。
3、求图上距离
⑴出示例题:一个长方形操场,长110米,宽90米。把它画在比例尺是1/1000的图纸上,长和宽各应画多少厘米?
⑵学生独立作业,反馈订正。
(四)巩固练习。
1、照片上的比例尺。
⑴估计照片的比例尺;
⑵量一量,算一算比例尺;
⑶汇报:你是怎么做的?算出的比例尺大概是多少?
2、操作发展练习:
出示学校平面图,各小组分别选择一个建筑的平面图,根据有关的数据,求出这个建筑的实际占地面积。(教学楼、操场、司令台、传达室、喷水池)
⑴引导讨论出求实际占地面积必须知道实际的长、宽或直径;
⑵小组分工进行合作学习;
⑶汇报交流,讲评。
师强调:求实际占地面积,就是实际的长乘以实际的宽;通过公式“实际距离=图上距离÷比例尺”可以求出实际的长或宽。
3/15 首页 上一页 1 2 3 4 5 6 下一页 尾页
显示全部
收起