易造网

当前位置:首页 > 综合 > 课件

中点四边形教学设计

作者:opple 时间:2023-01-11 阅读:()

  “中点四边形”教学设计

  一、学习目标:

  1、了解中点四边形的概念

  2、灵活应用三角形的中位线性质研究中点四边形与原四边形的关系。

  二、学习重点、难点

  1、重点:研究中点四边形与原四边形的关系;

  2、难点:找出中点四边形与原四边形的形状的变化规律。

  三、学习过程:

  (一)、复习:三角形的中位线性质:利用右图用几何语言表示

  (二)、练习:

  1.证明:顺次连结四边形的各边中点所组成的四边形(简称中点四边形)是平行四边形。

  已知:求证:

  2、与周围的同学交流一下证明方法。从以上的证明过程中可知:中点四边形的边与原四边形的对角线有密切关系。

  3、通过画图猜想:顺次连结矩形的各边中点所组成的四边形是什么形状?请证明你的结论。

  4、回味刚才的证明过程,想一想:要使中点四边形是菱形,原四边形一定要是矩形吗?

  由此可得:只要原四边形的两条对角线,就能使中点四边形是菱形。

  5、通过画图猜想:顺次连结菱形的各边中点所组成的四边形是什么形状?请证明你的结论。

  6、回味刚才的证明过程,想一想:要使中点四边形是矩形,原四边形一定要是菱形吗?

  由此可得:只要原四边形的两条对角线,就能使中点四边形是矩形。

  7、讨论一下:要使中点四边形是正方形,原四边形要符合的条件是

  8、小结:

  (1)中点四边形最起码是一个;

  (2)原四边形的对角线与中点四边形的边有密切关系:

  原四边形的两条对角线相等中点四边形的邻边也中点四边形是形

  原四边形的两条对角线垂直中点四边形的邻边也中点四边形是形

  原四边形的两条对角线垂直且相等中点四边形的邻边也

  中点四边形是形作业:

  1、顺次连结等腰梯形的各边中点所组成的四边形是特殊的平行四边形吗?证明你的结论。

  2、中点四边形的面积与原四边形的面积之比是。

  篇2:“中点四边形”教学设计教学反思

  广州市47中学汇景实验学校 刘莓

  第Ⅰ部分 学案(第一稿)

  课题:中点四边形

  姓名 班级 学号

  一、学习目标:

  1、了解中点四边形的概念

  2、灵活应用三角形的中位线性质研究中点四边形与原四边形的关系。

  二、学习重点、难点

  1、重点:研究中点四边形与原四边形的关系;

  2、难点:找出中点四边形与原四边形的形状的变化规律。

  三、学习过程:

  (一)、复习:三角形的中位线性质:利用右图用几何语言表示

  (二)、练习:

  1.证明:顺次连结四边形的各边中点所组成的四边形(简称中点四边形)是平行四边形。

  已知:

  求证:

  2、与周围的同学交流一下证明方法。

  从以上的证明过程中可知:中点四边形的边与原四边形的对角线有密切关系。

  3、通过画图猜想:顺次连结矩形的各边中点所组成的四边形是什么形状?

  请证明你的结论。

  4、回味刚才的证明过程,想一想:要使中点四边形是菱形,原四边形一定要是矩形吗?

  由此可得:只要原四边形的两条对角线 ,就能使中点四边形是菱

  形。

  5、通过画图猜想:顺次连结菱形的各边中点所组成的四边形是什么形状?

  请证明你的结论。

  6、回味刚才的证明过程,想一想:要使中点四边形是矩形,原四边形一定要是菱形吗?

  由此可得:只要原四边形的两条对角线 ,就能使中点四边形是矩形。

  7、讨论一下:要使中点四边形是正方形,原四边形要符合的条件是

  8、小结:

  (1)中点四边形最起码是一个 ;

  (2)原四边形的对角线与中点四边形的边有密切关系:

  原四边形的两条对角线相等 中点四边形的邻边也 中点四边形是 形

  原四边形的两条对角线垂直 中点四边形的邻边也 中点四边形是 形

  原四边形的两条对角线垂直且相等 中点四边形的邻边也

  中点四边形是 形

显示全部

收起

相关文章
精品推荐
猜你喜欢