易造网

当前位置:首页 > 综合 > 课件

三角形教学设计

作者:opple 时间:2023-01-10 阅读:()

  3、三角形按角分可分成几类?

  4、引出内角的概念,我们把图形里面的角叫做内角。三角形有几个内角?三角形三个内角的度数和叫做三角形的内角和。这天我们一齐来研究三角形的内角和。(板书课题:三角形的内角和)

  设计意图:学生对数学知识的学习,在很多时候都是对已有数学知识的延伸和发展。本节课,我充分认识到学生已有知识对新知的铺垫和孕伏作用,设计了三道复习题,把角的度数,长方形的特征,三角形的分类这些原本零散的数学知识纳入到一个整体,让旧知的复习、新知的孕伏和引入有机的结合起来。

  二、创设情境,大胆猜想

  1、长方形的内角和是多少度?为什么?如果沿长方形的一条对角线剪开,长方形就变成了两个什么图形?

  2、出示三个三角形,说一说分别属于哪一类?(板书:锐角三角形直角三角形钝角三角形),决定这三个三角形的内角和谁大?为什么?(板书:内角和)

  3、你猜三角形的内角和是多少度?(板书:是180°)

  设计意图:数学教学最为重要的是要培养学生对数学的感觉,给学生一双数学的眼睛,由于学生已经明白长方形的内角和是360°,抓住时机,要求学生猜一猜三角形的内角和是多少度,以此培养学生的探索精神和创新意识。

  三、动手操作,探究验证。

  1、小组合作。

  同学们能够用什么方法来验证三角形的内角和是180°,请同学们小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!

  2、汇报交流。

  谁愿意来给大家介绍你们小组是用什么方法来验证三角形的内角和是180°的?

  量一量:

  生:我们小组的方法是用量角器测量出三个内角的度数,再求出它们的和。

  师:你们的方法是分别测量三个内角的度数,那你们测量的三个内角的度数分别是多少?(生汇报时吩咐学生记录下来并算出内角和)你觉得这个小组的方法怎样?(抽生评价)这种方法可出现误差吗?为什么?(生回答)

  师:能不能因此否定我们刚才的猜想呢?还有不同的方法吗?

  折一折:

  生:我们是透过折一折的方法得出结论的。(边说边演示)。我将直角三角形的.两个锐角折向直角,三个顶点重合,我发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°,所以我得出结论:直角三角形的内角和是180°。

  生:我拿一个锐角三角形,把上面的角沿虚线横折,使它的点落到底边上,再将剩下的两个角横折过来,使三个角正好拼在一齐,这三个角组成了一个平角,所以我得出结论:锐角三角形的内角和是180°。

  生:我拿一个钝角三角形,用同样的方法去折,发现钝角三角形的三个角也正好拼在一齐组成一个平角,所以我得出结论:钝角三角形的内角和是180°。

  生:直角三角形的三个角也能够用同样的方法折拼成一个平角。

  师:真是心灵手巧的孩子,让我们把掌声送给他们!动脑筋的同学真多,请你说。

  拼一拼:

  生:我发现两个直角三角形正好能够拼成一个长方形,长方形的四个角都是直角,所以,长方形的内角和是360°。再除以2,就得到直角三角形的内角和是180°。

  师:能从不同的角度去思考问题,你真棒!

  剪一剪,摆一摆:

  生:我们将每个三角形的三个角都剪下来,再把每个三角形的三个角的顶点重合,发现每个三角形的三个角都组成了一个平角,这就证明了三角形的内角和是180°。

  师:你们只验证了三个三角形,为什么从中能得出“三角形的内角和是180°”的结论呢?

  生:因为三角形按角分能够分为三类,钝角三角形,直角三角形和锐角三角形。我们已经透过各种的方法证明了这三种类型的三角形的内角和是180°,所以能够得出“三角形的内角和是180°”的结论。

  师:说得真好,我们给他鼓掌。

  师概括小结。:刚才同学们用量、折、拼、计算、推理、剪等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,(师手指课题)你们真不错,我为你们成功的学习表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是180°”。

显示全部

收起

相关文章
精品推荐
猜你喜欢