易造网

当前位置:首页 > 我爱学习 > 说课稿

新人教版不等式教学设计

作者:opple 时间:2023-01-05 阅读:()

  备课资料

  备用习题

  1.比较(x-3)2与(x-2)(x-4)的大小.

  2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.

  3.已知x>0,求证:1+x2>1+x .

  4.若x

  5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.

  参考答案:

  1.解:∵(x-3)2-(x-2)(x-4)

  =(x2-6x+9)-(x2-6x+8)

  =1>0,

  ∴(x-3)2>(x-2)(x-4).

  2.解:(1)(m2-2m+5)-(-2m+5)

  =m2-2m+5+2m-5

  =m2.

  ∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.

  ∴m2-2m+5≥-2m+5.

  (2)(a2-4a+3)-(-4a+1)

  =a2-4a+3+4a-1

  =a2+2.

  ∵a2≥0,∴a2+2≥2>0.

  ∴a2-4a+3>-4a+1.

  3.证明:∵(1+x2)2-(1+x)2

  =1+x+x24-(x+1)

  =x24,

  又∵x>0,∴x24>0.

  ∴(1+x2)2>(1+x)2.

  由x>0,得1+x2>1+x.

  4.解:(x2+y2)(x-y)-(x2-y2)(x+y)

  =(x-y)[(x2+y2)-(x+y)2]

  =-2xy(x-y).

  ∵x0,x-y<0.

  ∴-2xy(x-y)>0.

  ∴(x2+y2)(x-y)>(x2-y2)(x+y).

  5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,

  当a>b>0时,ab>1,a-b>0,

  则(ab)a-b>1,于是aabb>abba.

  当b>a>0时,0

  则(ab)a-b>1.

  于是aabb>abb a.

  综上所述,对于不相等的正数a、b,都有aabb>abba.

  【基本不等式教学设计(通用8篇)】

  篇11:不等式单元教学设计

  〖教学目标〗

  在本学段,学生将经历从实际问题中建立不等关系,进而抽象出不等式的过程,体会不等式和方程一样,都是刻画现实世界中同类量之间关系的重要数学模型,同时进一步发展学生的符号感。

  (一)知识目标

  1、能够根据具体问题中的大小关系了解不等式的意义。

  2、理解什么是不等式成立,掌握不等式是否成立的判定方法。

  3、能依题意准确迅速地列出相应的不等式。体会现实生活中存在着大量的不等关系,学习不等式的有关知识是生活和工作的需要。

  (二)能力目 标

  1、培养学生运用类比方法研究相关内容的能力。

  2、训练学生运用所学知识解决实际问题的能力。

  (三)情感目标

  1、通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识。

  2、通过 不等式的学习,渗透具有不等量关系的数学美。

  〖教学重点〗

  能依题意准确迅速地列出相应的不等式。

  〖教学难点〗

  理解符号“≥”“ ≤”的含义,理解什么是不等式成立。

  〖教学过程〗

  一、课前布置

  1、浏览课本P2~21,了解本章结构。

  自学:阅读课本P2~P4,试着做一做本节练习,提出在自学中发现的问题。

  2、查找“不等号的由来”

  备注: 不等号的由来。

  ①现实世界中存在着大量的不等 关系,如何用符号表示呢? 为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽脑汁。1631年,英国数学家哈里奥特首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号。与哈里奥特同时代的数学家们也创造了一些表示大 小关系的`符号,但都因书写起来十分繁琐而被淘汰。

  ②后来,人们在表达不等关系时,常把等式作为不等式的特殊情况来处理。在许多情况下,要用到一个数(或量)大于或等于另 一个数(或量),此时就把“>”和“=”有机地结合起来得到符号“≥”,读做“大于或等于”,有时也称为“不小于”。同样,把符号“≤”读做“小于或等于”,有时也称为“不大于”。

  那么如何理解符号“≥”“≤”的含义呢?用“≥”表示“>”或 “=”,即两者必居其一,不要求同时满足。例如 ≥0,其中只有“>”成立,“=”就不成立。同样“≤”也有类似的情况。

  ③因此有人把a>b,b现代数学中又用符号“≮”表示“不小于”,用“≯”表示“不大于”。有了这些符号,在表示不等关系时,就非常得心应手了。

显示全部

收起

相关文章
精品推荐
猜你喜欢