易造网

当前位置:首页 > 我爱学习 > 说课稿

数学说课稿

作者:opple 时间:2022-12-28 阅读:()

  如果a=3.6 b=0.6呢? 学起于思,思起于疑,无疑则无知。教育家托尔斯泰说过:成功的教学所需要的不是强制,而是唤起学生强烈的求知欲望,激发学生的兴趣。充分利用媒体教学的直观性,动画显示学生熟悉的剪纸操作,创设问题情境引发学生思考。使学生把学习当成一种自我需要,为学生营造一种轻松、和谐的学习氛围,从而自然导入新课。

  教学过程 设计意图

  (二)分析问题,发现新知

  问题:我们知道,(a+b)(a-b)=a2-b2,能否将它反过来得到a2-b2=(a+b)(a-b)呢?

  活动3:(1)观察多项式X2-25,9X2-y2,它们有什么共同特征?(2)尝试将它们分别写成两个因式的乘积,并与同伴交流。 “有效的教学一定要从学生已经知道了什么开始”.通过设问,引起全体学生注意,与教师一起进行积极的思维,尽快进入学习状态,所设问题用于复习相关知识与技能进行诊断检测,并针对所存在的缺陷进行补偿教学,为学生学习新知识奠定基础。

  (三)合作交流,探索新知

  问题:(1)用语言叙述公式(体现合作)。

  (2)公式有什么特点?

  (3)公式中的字母a、b可以表示什么?

  活动4:根据你对公式的理解,请举出几个用平方差公式分解的例子,并指出多项式中谁相当于公式中的字母a,谁相当于公式中的字母b?(尽可能地让学生探索、发现)。

  x2-25=x2-52=(x+5)(x-5)

  a2-b2=(a+b)(a-b)

  9x2-y2=(3x)2-y2=(3x+y)(3x-y) 问题是知识、能力的生长点,富有挑战性的问题能激发原有认知,促使学生主动地进行探索和思考。通过引导学生对问题情境循序渐进的探讨,让学生猜一猜、想一想,使他们体会了知识的发生、发展过程及怎样从复杂情境中分离、抽象出数学模型,培养了学生从特殊到一般的认知方法。

  (四)例题探究,体验新知:

  例1 填空:(1)25m2=( )2 (2)0.49b2=( )2 (3) c2=( )2

  例2:把下列各式分解因式

  (1)25-16x2 (2)9a2- b2

  例3:把下列各式分解因式

  (1)9(m+n)2-(m-n)2 (2)2x3-8x

  例4:计算(1)6782-3782 (2)852-842 “实践出真知”.教师通过引导、启发,让学生分4人小组,进行合作学习、讨论、交流,使学生在解决问题的过程中,不断获得成功的体验,增强他们的创新意识和能力。

  (五)随堂练习,巩固新知:

  1、判断正误:

  (1)x2+y2=(x+y)(x+y)( ) (2)x2-y2=(x+y)(x-y)( )

  (3)-x2+y2=(-x+y)(-x+y)( ) (4)-x2-y2=-(x+y)(x-y)( )

  2、把下列各式分解因式:

  (1)a2b2-m2 (2)(m-a)2-(n+b)2

  (3)x2-(a+b-c)2 (4)-16x4+81y4

  3、解决(一)活动2所提出的问题。 “学生思维的水平高低与基本技能是密切相关的,只有通过强化训练,才能提高学生的思维起点。”1、2题的目的,是巩固新知,对学习中有困难的学生,给予适当的点拨和鼓励,及时发现学生出现的问题。而第3题,增强了知识的运用性,使学生学以致用,形成能力。同时,体现数学活动是学生自己构建数学知识的活动,教师起到引导学生进行有效地构建数学知识的活动。

  (六)归纳小结,形成体系

  1、因式分解与乘法公式的关系。

  2、平方差公式的特点。

  3、应用平方差公式分解因式的多项式应满足的条件。

  4、公式中字母a、b可以是任意数、单项式或多项式。 归纳是一种推理的方法,由一系列具体的事例概括出原理(跟“演绎”相对)。能使学生的感性认识升华到理性认识,既可锻炼学生由具体到抽象的思维能力,培养学生数学语言的表达能力,严谨的逻辑思维品质。先引导学生自由发言、互相补充,教师进行修正、精炼阐述。这样的小结既梳理了知识,又点明了本节课的学习要点,同时使学生对本节知识体系有一个清晰的认识,为下节的学习打下良好基础,起到画龙点晴的作用。

  (七)布置作业,反思提炼。P56习题2.4 1、2、3

  四、教学方法

  通过对新课程标准及新教材研究,我认为数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。数学教学应从学生实际出发,创设有利于学生自主学习的问题情境,引导学生通过实践、探索、交流获得知识,形成技能,发展思维,进而达到学会学习,促使学生在教师指导下,生动活泼的、主动和富有个性的学习,在教学活动中,教师应该发挥民主、成为学生数学活动的组织者、引导者和合作者。而我校所开发的省级课题《课程实施与教学改革――数学思维方法与应用性问题教学的实践研究》中,明确提出预期目标:

显示全部

收起

相关文章
精品推荐
猜你喜欢