作者:opple 时间:2023-01-13 阅读:()
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1.只有xy=123是反比例函数.
2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设,因为x=2时,y=6,所以有解得k=12
三、巩固提高
活动5
1.已知y是x的反比例函数,并且当x=3时,y= ?8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2.y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
篇15:反比例教学设计
教学目标:
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:
20支铅笔、一个笔筒;相关课件;学生分小组(每组各一份观察记录单及讨论表格)
讨论填表 观察记录单
教学过程:
一、情境导入 揭示内容
1、课前谈话:同学们,有谁去过北京?你知道南昌到北京需要多长时间吗?我们来看一组信息:(媒体显示:1、火车图片及火车启动的声音,2、文字信息是:两年前,小红乘坐由南昌开往北京西的T168次列车,需要花19时11分到达,现在火车提速了,小红再次乘坐这趟列车,还需这么多时间吗?为什么?)
2、学生对上述问题发表意见。
3、教师揭示:下面,我们就带着这个问题进行今天的学习。
[反比例的量与日常生活中常见的数量关系联系得非常紧密,利用身边的例子引出学习内容,使学生深刻感受到数学就在我们身边,我们身边处处有数学,也能体会到数学知识能够解决实际问题,学到有价值的数学。]
二、小组协作 概括意义
(一) 活动一:(例4)
1、 教师出示一个笔筒,里面装着许多笔,请同学们仔细观察,记录老师每次拿笔的支数和拿的次数。
教师操作:每次拿10支 拿了2次;
每次拿5支, 拿了4次;
2、学生进行小组活动,观察后,以小组为单位,填写观察记录单。
3、 如果每次拿的支数分别是4、2、1时,你们能推算出相对应的拿的次数吗?(继续讨论填表)
4、 学生汇报观察记录单的填写结果。并且说一说你是怎样知道相对应的拿的次数?
5、 引导观察:在填、拿的过程中,你发现什么变了?怎样变的?什么没变?
6、 让学生说出几组相对应的乘积。
7、 小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
[数学教学是数学活动的教学,将学生熟悉的事情或操作性强的事例作为学生学习的内容,学生感觉亲切、贴近生活,易于理解,在观察中思考,在操作中体验,学生学得主动、学得积极,在填一填、拿一拿、猜一猜的活动中,自然而然地体会
16/18 首页 上一页 14 15 16 17 18 下一页 尾页
显示全部
收起