易造网

当前位置:首页 > 综合 > 课件

人教版绝对值教学设计

作者:opple 时间:2023-01-11 阅读:()

让学生自己总结,既锻炼学生的语言表达能力,又能加深学生对知识的掌握和理解。培养学生的数学语言及分类的数学思维。

通过习题加深学生的记忆和对绝对值的概念的掌握。

通过总结和提问帮助学生记忆本节课知识点,并加深理解,进行实际运用。

篇7:《绝对值的定义》教学设计

教学目标

(1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法;

(2)通过含有绝对值符号的不等式的证明,进一步巩固不等式的证明中的由因导果、执要溯因等数学思想方法;

(3)通过证明方法的探求,培养学生勤于思考,全面思考方法;

(4)通过含有绝对值符号的不等式的证明,可培养学生辩证思维的方法和能力,以及严谨的治学精神。

教学建议

一、知识结构

二、重点、难点分析

①  本节重点是性质定理及推论的证明.一个定理、公式的运用固然重要,但更重要的是要充分挖掘吸收定理公式推导过程中所蕴含的数学思想与方法,通过证明过程的探求,使学生理清思考脉络,培养学生勤于动脑、勇于探索的精神.

② 教学难点  一是性质定理的推导与运用;一是证明的方法选择.在推导定理中进行的恒等变换与不等变换,相对学生的思维水平是有一定难度的;证明的方法不外是比较法、分析法、综合法以及简单的放缩变换,根据要证明的不等式选择适当的证明方法是无疑学生学习上的难点.

三、教学建议

(1)本节内容分为两课时,第一课时为性质定理的证明及简单运用,第二课时为的证明举例.

(2)课前复习应充分.建议复习:当 时

;

;

以及绝对值的性质:

,为证明例1做准备.

(3)可先不给出性质定理,提出问题让学生研究: 是否等于 ?大小关系如何? 是否等于  ?等等.提示学生用一些数代入计算、比较,以便归纳猜想一般结论.

(4)不等式 的证明方法较多,也应放手让学生去探讨.

(5)用向量加减法的三角形法则记忆不等式及推论 .

(6)本节教学既要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神.

教学设计示例

教学目标

理解 及其两个推论,并能应用它证明简单含有绝对值不等式的证明问题。

教学重点难点

重点是理解掌握定理及等号成立的条件,绝对值不等式的证明。

难点是定理的推导过程的探索,摆脱绝对值的符号,通过定理或放缩不等式。

教学过程

一、复习引入

我们在初中学过绝对值的有关概念,请一位同学说说绝对值的定义。

当 时,则有:

那么 与 及 的大小关系怎样?

这需要讨论 当

综上可知:

我们已学过积商绝对值的性质,哪位同学回答一下?

.

当 时,有: 或 .

二、引入新课

由上可知,积的绝对值等于绝对值的积;商的绝对值等于绝对值的商。

那么和差的绝对值等于绝对值的和差吗?

1.定理探索

和差的绝对值不一定等于绝对值的和差,我们猜想

.

怎么证明你的结论呢?

用分析法,要证 .

只要证

即证

即证 ,

而 显然成立,

那么怎么证 ?

同样可用分析法

当 时,显然成立,

当 时,要证

只要证 ,

即证

而 显然成立。

从而证得 .

还有别的证法吗?(学生讨论,教师提示)

由 与 得 .

当我们把 看作一个整体时,上式逆用 可得什么结论?

能用已学过得的 证明 吗?

可以 表示为 .

即 (教师有计划地板书学生分析证明的过程)

就是含有绝对值不等式的重要定理,即 .

由于定理中对 两个实数的绝对值,那么三个实数和的绝对值呢? 个实数和的绝对值呢?

亦成立

这就是定理的一个推论,由于定理中对 没有特殊要求,如果用 代换 会有什么结果?(请一名学生到黑板演)

用 代 得 ,

即 。

这就是定理的推论 成立的充要条件是什么?

那么 成立的充要条件是什么?

.

例1 已知 ,求证 . (由学生自行完成,请学生板演)

显示全部

收起

相关文章
精品推荐
猜你喜欢