作者:opple 时间:2023-01-11 阅读:()
(三)继续探究
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢?
生:把它们剪下来放在一起。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。
生3:钝角三角形的内角和还是180°。
3课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:我们可以得出一个怎样的结论?
生:三角形的内角和是180°。
(教师板书:三角形的内角和是180°学生齐读一遍。)
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢?
生:不可能。
师:为什么?
生:因为两个锐角和已经超过了180°。
师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、按要求计算。(数学信息较为隐藏和生活中的实际问题)
3、游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
五、全课总结。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
一、学生知识状况分析
学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。
活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验。
二、教学任务分析
上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:
知识与技能:(1)掌握三角形内角和定理的证明及简单应用。
(2)灵活运用三角形内角和定理解决相关问题。
数学能力:用多种方法证明三角形定理,培养一题多解的能力。
情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
三、教学过程分析
本节课的设计分为四个环节:情境引入――探索新知――练习反馈――课堂小结
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理。
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6―38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1)(2)(3)(4)
试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?
(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?
活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明。
18/20 首页 上一页 16 17 18 19 20 下一页 尾页
显示全部
收起