作者:opple 时间:2023-01-03 阅读:()
情感、态度与价值观:
通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.
教学方法启发诱导式 教具 三角尺
教学重点平行四边形判定方法的探究、运用.
教学难点对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用
教学过程:
第一环节 复习引入:
问题1:
1.平行四边形的定义是什么?它有什么作用?
2.判定四边形是平行四边形的方法有哪些?
(1)两组对边分别平行的四边形是平行四边形.
(2)一组对边平行且相等的四边形是平行四边形.
(3)两条对角线互相平分的四边形是平行四边形.
第二环节 探索活动
活动:
工具:两对长度分别相等的木条。
动手:能否在平面内用这四根笔摆成一个平行四边形?
思考1.1:你能说明你所摆出的四边形是平行四边形吗?
已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形.
思考1.2:以上活动事实,能用文字语言表达吗?
学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:
(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.
(2)通过观察、实验、猜想到:
两组对边分别相等的四边形是平行四边形.
在此活动中,教师应重点关注:
(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;
(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;
(3)学生能否通过独立思考、小组合作得出正确的证明思路.
第三环节 巩固练习
例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?
八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?
随堂练习
1.判断下列说法是否正确
(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )
(2)两组对角都相等的四边形是平行四边形 ( )
(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )
(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )
2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?
3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.
4.如图:AD是ΔABC的边BC边上的中线.
(1)画图:延长AD到点E,使DE=AD,连接BE,CE;
(2)判断四边形ABEC的形状,并说明理由.
第四环节 小结:
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)平行四边形判定的应用 集备意见 个案补充
篇10:初中八年级上册数学知识点
1、全等三角形的对应边、对应角相等
2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5、边边边公理(SSS)有三边对应相等的两个三角形全等
6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7、定理1在角的平分线上的点到这个角的两边的距离相等
8、定理2到一个角的两边的距离相同的点,在这个角的平分线上
9、角的平分线是到角的两边距离相等的所有点的集合
10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
13、推论3等边三角形的各角都相等,并且每一个角都等于60°
10/13 首页 上一页 8 9 10 11 12 13 下一页 尾页
显示全部
收起