易造网

当前位置:首页 > 综合 > 课件

人教新版八年级数学上册教案

作者:opple 时间:2023-01-03 阅读:()

  归纳:一般地,正比例函数y=kx(k是常数,k≠ 0)的图象是一条经过原点的直线.

  当k>0时,图象经过一、三象限,从左向右上升,即随x的增大y也增大;

  当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小.

  由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

  六、指导应用,发展能力

  例2 在同一直角坐标系中画出y=x,y=2x,y=3x的函数图象,并比较它们的异同点.

  相同点:图象经过一、三象限,从左向右上升;

  不同点:倾斜度不同, y=x,y=2x,y=3x的函数图象离y轴越来越近.

  例3 在同一直角坐标系中画出y=-x,y=-2x,y=-3x的函数图象,并比较它们的异同点.

  相同点:图象经过二、四象限,从左向右下降;

  不同点:倾斜度不同, y=-x,y=-2x,y=-3x的函数图象离y轴越来越近.

  在y=kx中,k的绝对值越大,函数图象越靠近y轴.

  篇10:八年级数学上册教案

  【教学目标】

  知识目标:

  解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

  能力目标:

  (1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

  (2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

  情感目标:

  充分调动学生学习的积极性、主动性

  【教学重点】

  单项式与多项式的乘法运算

  【教学难点】

  推测整式乘法的运算法则。

  【教学过程】

  一、复习引入

  通过对已学知识的复习引入课题(学生作答)

  1.请说出单项式与单项式相乘的法则:

  单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

  (系数×系数)×(同字母幂相乘)×单独的幂

  例如:( 2a2b3c) (-3ab)

  解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

  = -6a3b4c

  2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

  问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

  这便是我们今天要研究的问题。

  二、新知探究

  已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

  现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

  上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

  结论单项式与多项式相乘的运算法则:

  用单项式分别去乘多项式的每一项,再把所得的积相加。

  用字母表示为:m(a+b+c)=ma+mb+mc

  运算思路:单×多

  转化

  分配律

  单×单

  三、例题讲解

  例计算:(1)(-2a2)· (3ab2– 5ab3)

  (2)(- 4x) ·(2x2+3x-1)

  解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

  (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

  篇11:八年级数学上册教案

  教学目标

  知识与能力:

  1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

  2.理解平行四边形的另一种判定方法,并学会简单运用.

  过程与方法:

  1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.

  2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

  情感、态度与价值观:

  通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

  教学方法启发诱导式 教具 三角尺

  教学重点平行四边形判定方法的探究、运用.

显示全部

收起

相关文章
精品推荐
猜你喜欢