作者:opple 时间:2022-12-07 阅读:()
五、评价分析
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
尊敬的各位专家评委、老师们:上午好!
我是12号说课教师。今天我说课的题目是函数的奇偶性。我将从教材分析、目标确立、教法和学法的确定、教学程序设计、过程分析五个方面对本节课进行说明.
一 教材分析:
本节课是高中数学人教B版必修一2.1.4的内容,是学生在学习了函数、轴对称和中心对称图形的基础上来学习的,函数的奇偶性是考察函数性质时的又一个重要方面。教材从具体到抽象,从感性到理性,循序渐进地引导学生进入数学领域进行观察、归纳,形成函数奇偶性概念。同时渗透数形结合,从特殊到一般的数学思想。
二、确立教学目标
(1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断简单函数的奇偶性。
(2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊到一般的数学思想方法.
(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。 .教学重点:函数奇偶性概念的形成
教学难点:函数奇偶性的判断
三、 说教法和学法
1、教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法、类比法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
2、学法 让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
四、教学程序设计:
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:
(一)设疑导入,观图激趣。(二)指导观察,形成概念。(三)学生探索、发展思维。
(四)知识应用,巩固提高。(五)归纳小结,布置作业。
五、说课过程:
(一)设疑导入、观图激趣。
1、用多媒体展示一组图片,让学生感受生活中的美:对称美,再让学生举例。
通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为新知作好铺垫。
(二)指导观察、形成概念。 数学中对称的形式也很多,这节课我们就同学们谈到的与轴对称的函数展开研究。 先思考一个问题:哪些函数的图象关于轴对称?试举例。
然后以函数f(x)=x2和f(x)=︱x︱为例,学生动手作出图像,让学生回想,初中时怎样判断图象关于
轴对称呢? 此时提出研究方向: 今天我们将从数值角度研究图象的这种
特征,体现在自变量与函数值之间有何规律?
引导学生先把它们具体化,再用数学符号表示.借助课件演示(令
得出等式 比较
, 再令
,得到
) 让学生发现两个函数的对称性反应到函数值上具有的特性:,然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立.最后让学生用完整的语言给
出偶函数定义,不准确的地方教师予以提示或调整.
(1) 偶函数的定义:(板书)
设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D 且
f(-x)=f(x),那么f(x)就叫做偶函数.
接着提出新问题:
函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?然后多媒体展示两个学生非常熟悉的函数 f(x)?x和f(x)?1
x的图象让学生观察研究。
显示全部
收起